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The volume fraction of  gas bubbles in a vertical cell with a separator was evaluated on the basis of  
the Bruggemann equation by taking into account the increase in velocity of  the rising gas bubbles 
when fresh solution without gas bubbles is supplied to the bottom of the cell at constant velocity. This 
enhancement of  the velocity results from an increase in the volume of  gases evolving at the working 
electrode. The following three cases for overpotential at the working electrode were considered: no 
overpotential, overpotential of the linear type and of the Butler-Volmer type. The volume fraction, 
eh, at the top of  the cell was expressed as a function of  the dimensionless height of  the cell and kinetic 
parameters. The total cell resistance can be expressed by {(2/5eh)[(1 - eh) -3/2 - 1 + ~h] + 
#}0~ d~/wh, where O~ is the resistivity of the solution without gas bubbles, d~ the interelectrode 
distance, w the cell width, h the cell height and /~ the parameter involving overpotential and 
resistance of  the separator. It was found that there is an optimum value of  the interelectrode 
distance. The optimum value is about a quarter of the value for the case of constant gas rise velocity, 
which corresponds to a closed system. 

Nomenclature 
R t 

b linear overpotential coefficient T 
C proportionality constant given by u 

Equation 2 
d~ interelectrode distance v 
d2 thickness of  the separator v0 
F vh 
h V 
i Veq 
I 
i0 
k 
n 

P 
t" 

R 
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Faraday constant 
height of the cell 
current density 
total current 
exchange current density 
parameter given by dl (z) m 
number of  electrons transferred 
gas pressure 
dimensionless cell resistance defined by 
Equation 16 
gas constant 
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W 

Y 

zh 

total cell resistance 
temperature 
auxiliary function defined by Equation 
37 
solution velocity in the cell 
solution velocity at the bottom of the cell 
solution velocity at the top of  the cell 
voltage at the working electrode 
voltage at the working electrode when 
no current flows 
width of  the electrode 
axis in the vertical direction from the 
bottom of  the cell 
dimensionless variable for y, defined by 
Equation 8 
dimensionless variable for h, defined by 
[ c ( v  - Ve~)/(01 a, %)]h 
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g 

~h 

t/' 

# 

anodic transfer coefficient in the Butler- 
Volmer equation /~Bv 
volume fraction of gas bubbles in the cell #c 
volume fraction of gas bubbles at the top #s 
of the cell ~ 
dimensionless cell voltage, given by 
Equation 38 ~ (y) 
Butler-Volmer overpotential 
Butler-Volmer overpotential when Q2 
current density, I/wh, flows through the A 
electrode, as described in Equation 42 
parameter representing either #s, #s + 

#L or #s + /~Bv 
ratio defined by Equation 41 
ratio defined by b/(p~ d~) 
ratio defined by ~zd2/(~d~) 
resistivity of the solution phase without 
gas bubbles 
resistivity of the solution phase with gas 
bubbles at level y 
resistivity of the separator 
kinetic parameter in the Butler-Volmer 
equation, given by Equation 39 

1. Introduction 

Industrial electrolysis in production-type cells is almost always accompanied by gas evolution. 
Evolving gases alter both the ohmic drop of the solution and mass transport in the cell. Several 
models for effects of gas evolution have been reviewed by Vogt [1]. 

The relation between the effective conductivity of the solution involving gas bubbles and the 
volume fraction of gas bubbles has been investigated on the basis of Maxwell's and Bruggemann's 
equations [1]. The relation has been tested experimentally with suspensions of solid particles [2, 3] 
and with dispersion of simulated gas evolution [4]. Tanaka et al. [5] exaggerated the presence of the 
bubble-dispersion layer of chlorine gas by measuring the variation of potential with the distance 
between the electrode and a probe. Hine et al. [6] considered non-uniform bubble distribution, in 
which gas dispersion was concentrated near the electrode and more dilute in the bulk. Sides and 
Tobias [7] calculated the potential field around a spherical bubble in contact with an electrode and 
then examined it experimentally [8]. Vogt [9] derived an expression for the ohmic interelectrode 
resistance on the assumption of uniform current distribution in the cell with a bubble curtain. Lanzi 
and Savinell [10] presented a two-dimensional constriction model of a dense bubble curtain. 

Tobias [11] applied Bruggemann's equation to estimating the effect of gas evolution on current 
distribution in a vertical cell composed of a parallel plate electrode. Nagy [12] calculated the current 
distribution in a cell with vertical blade electrodes, according to the treatment of Tobias [11]. In these 
two reports, a stagnant electrolyte was assumed. In industrial cells, however, it is common to supply 
electrolytes to the cell [1] by forced convection or natural circulation. Under this condition, Funk 
and Thorpe [13] and Thorpe et al. [14] extended the theory to the more complicated system of water 
electrolysis. Rousar et aI. [15, 16] carried out a chemical engineering calculation for a chlorate cell 
by combining various parameters. Since this previous work has been devoted to evaluating operat- 
ing factors, the fundamental relation between current distribution and volume fraction of gases has 
been left unsolved. 

The target of this work is to discuss systematically these effects by evaluating cell resistance as a 
function of volume fraction of gas bubbles evolved at a parallel plate electrode in a vertical cell with 
a separator on the basis of the Bruggemann equation under the condition of forced convection. The 
following three cases for overpotential at the working electrode are considered: no overpotential, 
overpotential of the linear type and of the Butler-Volmer type. 

2. Assumptions and basic equations 

We consider a vertical cell equipped with working and counter electrodes between which a separator 
(e.g. an ion exchange membrane or a diaphragm) is inserted, as depicted in Fig. 1. The following 
assumptions are made: 
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Fig. 1. Geometry of the model cell and schematic represen- 
tation of distribution of evolving gas bubbles. 

(a) The height of  the cell is larger than the distance between the working electrode and the 
separator so that the flow of current can be regarded as unidirectional and perpendicular to the 
electrode. 

(b) The working electrode and the counter electrode have such a good conductance that each 
electrode has equipotential distribution. 

(c) There is no overpotential at the counter electrode. In addition the interstice between the 
counter electrode and the separator is so narrow that the interface between the separator and the 
interstice has equipotential distribution. Therefore our concern is directed to a compartment 
involving the working electrode. 

(d) We take the distance along the electrode f ro m  the bottom of  the cell to be y. Then the ohmic 
resistivity, Q~(y), of  the solution involving gas bubbles with the volume fraction, e(y), at the level y 
is given by the Bruggemann equation [17] 

~,(y) = ~{1 - e(y)] 3/z (1) 

where ~ denotes the resistivity of  the solution when the solution does not contain any bubbles. The 
validity of  Equation 1 has been verified experimentally when spherical insulators with a large 
size-range are dispersed randomly in a conductive solution [2, 3]. Equation 1 has been applied 
extensively to the estimation of  the conductivity of  solutions mixed with gas bubbles. 

(e) Gas bubbles are generated only by the electrode reaction and the generation rate is propor- 
tional to the current density at the working electrode. 

(f) Gas bubbles thus generated are immediately unidirectionally dispersed in the cell toward the 
separator and hence there is no variation of  gas fraction in the direction perpendicular to the 
working electrode. 

(g) Bubble-free solution is supplied to the bottom of the cell. The inlet velocity, v0, is externally 
controlled so that it is independent of  the height of  the cell and the fraction of  the gas bubbles. 

(h) The velocity of  gas bubbles relative to that of  the solution is neglected. This relative velocity 
which is caused by buoyancy is much smaller than the inlet velocity commonly employed in 
industrial electrolysis [13, 14]. This assumption is equivalent to the fact that the slip ratio is unity. 

(i) There is no variation of  the pressure over the cell. 
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(j) Solution flows with a uniform velocity distribution in the direction perpendicular to the 
electrode. 

The equation for the mass balance [18] of gas bubbles under steady state conditions is given by 

d(ev) /dy  = Ci (2) 

The complement of the volume fraction of  gas bubbles becomes the volume fraction of the solution, 
expressed by (1 - e). Since there is no sink or source of the solution except at the inlet and the outlet 
of the cell, the equation for mass balance of the solution in the cell is expressed by 

d[(1 - e)v l /dy  = 0 (3) 

The boundary condition at y = 0 is given by 

e(0) = 0 and v(0) = v0 (4) 

Integrating Equation 3 under Condition 4 yields 

v = v0/(1 -- e) (5) 

Adding Equation 2 to Equation 3 and eliminating v by use of Equation 5 leads to 

i = (vo/C)(1  - e,) 2(de/dy) (6) 

This is a basic equation which gives the relation between the current density and the volume fraction 
of gas bubbles. If  a current-potential relation at the working electrode is specified, the volume 
fraction of gas bubbles can be evaluated by combining the current potential equation with 
Equations 1 and 6. The current-potential relations treated here are those of  no overpotential, of  the 
linear type and the Butler-Volmer type. The effective voltage applied between the working electrode 
and the counter electrode is taken to be V - V~q. 

3. Current distribution and ohmic resistance 

3.1. No overpotential  

In the absence of overpotential at the working electrode, the resistance of the interelectrode gap at 
the level y is expressed by [~l(y)dl + Q2d2], where ~1(Y) varies with the volume fraction of  gas 
bubbles and hence is a function of y. Then the current density is given by 

i = ( V -  Vcq)/[O,(y)da + 02d21 (7) 

Eliminating Q1 (Y) from Equations 1 and 7, inserting the resulting equation into Equation 6 and 
introducing the following dimensionless variable: 

Z =- [ C ( V -  Veq)/(OldlVo)]y (8) 

we obtain 

where 

dz /de  = (1 - ~)-7/2 + gs( 1 _ e)-2 (9) 

,Us = o 2 d 2 / ( ~ , d l )  (10) 

The solution of Equation 9 with the condition e(0) = 0 is given by 

z = (2/5)[(1 - e)-s/2 _ 11 + ,Us#(1 -- e) (11) 

When there is no separator in the cell, i.e. ,us = 0, an explicit solution for e can be obtained from 
Equation 11 in the following form: 
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Fig. 2. Variat ion of  volume fraction of  gas bubbles with 
dimensionless cell height for Ms = (a): 0, (b): 1, (c): 3, (d): 10, 
(e): 30 and (f): 100. 

= 1 -- [(1 + (5z/2)1 -el5 (12) 

In Fig. 2, variations of  e(z) with z are shown for several values of  #s- The linear variation found at 
large values of  #s is ascribed to the resistance of  the separator being much larger than that of  the 
solution, For  small values of  #s, e increases markedly with z and then tends to the curve calculated 
from Equation 12. As z ~ o% ~ approaches unity. 

In Fig. 3, the distribution of  the dimensionless current density, i[(~ d~)/(V - V~q)], being equal 
to (de/dz)(1 - e) -2 or 1/[(1 - e) -3/: + #s], is shown for several values of#s .  From comparison of  
these curves, one can easily see that the current distribution becomes uniform and the current 
density becomes small as the value of  gs increases. Thus/~s is a significant factor determining the 
current distribution. The curves in Fig. 3 may provide some measure of  the durability of  the 
electrode because durability is closely related to the current density. 

The variation of  the velocity of  the solution with the dimensionless height of  the cell is expressed 
implicitly by 

z = ( 2 / s ) [ ( V / V o )  5/2 - l ]  + ~ ( V / V o  - l )  (13) 

which has been derived by eliminating e from Equations 5 and 11. For  #s = 0, v/vo is given by 

v/vo = (1 + 5z/2) 2/5 (14) 

In Fig. 4, the variations are shown for several values of  ~t s. A linear variation of V/Vo with z for 
sufficiently large values Of#s is shown. With a decrease in #s, acceleration of  the velocity is enhanced. 

1. ~ 
~ 0 . 5  

% 

e 

20 Fig. 3. Distr ibut ion of  current density on the working elec- 
z I = C{ V- V, q l y / { / h d ~ v  o) 1 trode for ,Us = (a): O, (b): I, (c): 3, (d): lO and (e): 30. 



620 YOSHINORI NISHIKI, KO[CHI AOKI, KOICHI TOKUDA AND HIROAKI MATSUDA 

(1 

d 

S 10 1S 20 
Fig. 4. Var ia t ion  of  solut ion velocity with z for #s = (a): 0, 
(b): 1, (c): 3, (d): 10, (e): 30 and  (f): 100. 

For #s = 0, the solution velocity increases considerably and varies as z 2/5 because of the large 
variation of e with z, as shown in Curve (a) of Fig. 2. However in real cells, this rapid increase in 
v may be reduced by an increase in the pressure of  the gas and the solution viscosity. 

The most significant characteristic of the cell is the total cell resistance, Rt, defined by 

Rt  = ( V -  Veq)/I (t5) 

Then the dimensionless cell resistance, r, is given by 

r = ( V -  V ,q)wh/ ( I~ ld~)  = Rtwh/(Q~d~) (16) 

r can be expressed as a function of  e using the following procedures. Integration of Equation 2 yields 

C I  = ehVhW (17) 

from which vh is eliminated by use of Equation 5. Then it follows that 

I = W(vo /C)~h / (1  - ~ )  (18) 

Inserting this equation into Equation 16 yields 

r = Zh(1 - -  ~ , h ) / e h  (19) 

Inserting Equation 11 into Equation 19 results in 

r = (2/5e,)[(1 - eh) 3/2_ 1 + ~h] + # (20) 

where #s has been replaced by #, which stands for either #s, #s + #L or #s + #By, because it will 
be shown that this equation is still valid for #s + #L or #s + #av- The first term on the right hand 
side represents the resistance of the solution including gas bubbles, while the last term denotes the 
resistance of the separator. Therefore the dimensionless cell resistance can be expressed by a simple 
sum of dimensionless resistances of the solution phase and of the separator. In Fig. 5, values of 
r -- # are plotted against e h. When values of  e h are small, expanding Equation 20 about eh = 0 yields 

r -  # = 1 + (3/4)eh + (7/8)e~ + " ' "  (21) 

From this equation, a rough estimation of the increase in the resistivity of the solution phase due 
to gas bubbles is given by (3/4)eh. When the value of eh approaches unity, the resistance of the 
solution phase increases rapidly. However it is unimportant to discuss the behaviour for eh-values 
near unity because it is questionable whether the Bruggemann equation is valid for this range of e h. 

Tobias [11] derived an expression for the volume fraction of gas bubbles in a closed cell with- 
out forced convection of the solution. The conditions employed were formally equivalent to 
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Fig. 5. Variation of the dimensionless cell resistance with eh 
for I~ = 0. The solid curve, calculated from Equation 20, 
corresponds to the open system with forced convection while 
the dashed curve, calculated from Equation 22, corresponds 
to the closed system without forced convection, which has 
been evaluated by Tobias. 

independence of bubble rise velocity from height of  the cell, i.e. taking v in Equation 2 to be 
constant, v0. Inserting Equation 2 written in terms of v0 into Equation 7, combining with Equation 
1 and integrating the resulting equation yields 

zh = 2[(1 - eh) -1/2 - 1] + /~eh (22) 

Values of r - /t, calculated from the combination of Equations 19 and 22, are plotted against e in 
Fig. 5 as a dashed curve. When the dashed curve is compared with the solid curve at the same value 
on the ordinate in Fig. 5, it is noted that the volume fraction in the cell without forced convection 
is larger than that with forced convection due to the fact that the solution velocity is not increased. 

It is of  interest to express Rt as a function of  d~. Since bubbles generated by electrode reactions 
are assumed to be dispersed uniformly over the interelectrode region, the constant C is inversely 
proportional to d I. Hence Zh can be reduced to 

zh = k2/d? ( 2 3 )  

where k is independent of  dl. Combining Equations 12 for #s = 0 and 19 yields 

Rtwh/~l = (k/d,)/{[1 + 2.5(k/dl)2] 2 / 5 -  1} (24) 

Variations of Rtwh/r l with dl /k  are shown as the solid Curve (a) in Fig. 6. When values of  d~/k are 
very large, Rtwh/p ~ approaches the asymptotic (dotted) line, Rtwh/~o I = d l /k  , which would be 
observed without gas bubbles. With a decrease in dr/k, the curve gradually deviates upwards and 
rises suddenly after passing through the minimum point. For dj /k  < 0.04, it is found from Equation 
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\\ 
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Fig. 6. Dependence of the cell voltage on the interelectrode 
distance. The solid curve, calculated from Equation 24, 
corresponds to the open system with forced convection while 
the dashed curve corresponds to the closed system without 
forced convection, which has been evaluated by Tobias. The 
dotted line denotes the asymptotic line in the case of no 
bubble evolution. These curves are for/~ = (a): 0, (b):  I and 
(c): 3. 
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24 that Rtwh/o 1 is inversely proportional to d~/5. The increase results from an increase in the 
resistivity in the interelectrode gap caused by the accumulation of gas bubbles. The appearance of 
the minimum implies that there is an optimum interelectrode distance. This value is d~/k = 0.238. 
If  gas bubbles are generated at 100% current efficiency and can be regarded to behave ideally, 
the volume of gas generated by a current density i is expressed by (i/nF) (RT/p). Then the propor- 
tionality constants C and k are given by 

C = (1/nF)(Rr/p)/d~ (25) 
and 

k = [ R T ( V -  lZeq)h/(nFpQlVo)] 1/2 (26) 

respectively. Therefore the optimum interelectrode distance, (d~)opt, is given by 

(d0opt = 0.238[RT(V - ,  Veq)h/(nVpoxVo)] m (27) 

Tobias found the presence of an optimum value of the interelectrode distance and evaluated the 
value for the case of stagnant electrolytes [11]. Since his derivation contained unnecessary assump- 
tions, Nagy corrected the optimum value [16] to give d~/k = 0.944. Comparing this value with 0.238 
indicates that forced convection reduces the optimum value by a factor of approximately 4. 

Values of Rtwh/o 1 for # # 0 are shown in Fig. 6. Since it was difficult to derive an explicit form 
of Rt wh/o~, we evaluated Rt wh/o~ numerically. With an increase in #, the curves shift downward and 
to the left because a large part of the cell resistance is due to the resistance of the separator. Then 
values of (d~)op~ become smaller. We examined the variation of (d~)opt with # and obtained the 
following approximate equations: 

(d~)opt =- 0.238k/(1 + 0 . 6 5 f  87) (28) 

The corresponding minimum cell resistance, rm~n, is approximately given by 

rmi n ----- 1.17kO1/(l + 0.9 /z  0"9) (29) 

Errors involved in Equations 28 and 29 are less than 3%. 

3.2. Overpotential varying linearly with the current density 

When the overpotential is expressed by a linear relation to the current density, the cell resistance at 
the level y is given by [b + 01(y)dl + ~2d2]. Then the current density becomes 

i (y)  = ( V -  Weq)/[b --1- O~(y)d~ + 02d21 (30) 

If 02d2 in Equation 7 is replaced by (b + 02d2) in Equation 30, Equation 30 is equivalent to 
Equation 7. Since both b and ~2d2 are independent of y, Equations 9, 11, 12 and 20 with replacement 
of 02d2 by b + 02d2 are also valid for the case of this overpotential, where p is, instead of 
Equation 10, given by 

~t = ttL + ~s = (b + 02dz)/(old,) (31) 

UL = b / ( O l d t )  (32)  

/~L is a parameter expressing the leveling effect [11]. By taking into account this replacement, every 
equation in Section 3.1 is valid. The reason for permitting this simple replacement is that the 
coefficient b is equivalent to ohmic resistance. 

Combination of Equations 20 and 31 shows that the total cell resistance is a series connection of 
the ohmic drop and the resistance due to overpotential. Therefore the ratio Z of the overpotential 
to the ohmic drop is given by 

Z = #L/{(2/5~)[(1 - e,,)-3/2 _ 1 + ghl + #s} 

= b / { O l d l ( 2 1 5 8 h ) [ ( 1  - gh) -3/2 - -  1 "-1- gh] -{- Q2d2} (33) 
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This is the same as the Wagner number for the case in which ohmic resistance increases due to 
evolution of gas bubbles. 

3.3. Overpotential subject to the Butler-Volmer equation 

The Butler-Volmer equation, excluding effects of concentration variations, is given by 

i = i0{exp (enFtt/RT) - exp [(ct -- 1)nFq/RT]} (34) 

Then the cell voltage is expressed by the sum of the overpotential and the ohmic drop in the 
following form: 

V -  V~q = q + i[~(y)d~ + ~2~1 (35) 

Eliminating r/from Equations 34 and 35, inserting Equations 1 and 6 into the resulting equation and 
changing variable y for z by use of Equation 8 yields 

((/A)(1 - e)-2(d#dz) = exp (~ffu) - exp [(c~ - 1)~u] (36) 

where 

u = 1 -- [(1 - t3) - 3 / 2  -{- # s ] ( 1  - /3)-2(de/dz) (37) 

= n F ( V -  Veq)/RT (38) 

A = nFioo~d,/RT (39) 

37 show that the function e(z) has four parameters, #s, (, A and ~. Since 

10 

6- 

4- 

2- 

Fig. 7. Variat ion of  the dimensionless cell resistance with s h 
for #s = 0, A = 0.2 and ~ = (A): 100, (B): 15, (C): 6, (D): 
3 and (E): 0.2 when overpotential  is of  the But ler-Volmer 
type. 

Equations 36 and 
Equation 36 is a differential equation with a non-linear relation with respect to d/3/dz, it is very 
difficult to obtain an analytical solution for e(z). Hence we evaluated /3(z) numerically. The 
numerical procedure employed was as follows: Equations 36 and 37, into which the initial condition 
/3(0) = 0 was inserted, were solved with respect to (d#dz)z=0 by use of the Newton method. From 
the value of (d/3/dz)z =0 thus evaluated, the Runge -Kut t a  method [19] permitted evaluation of/3(Az), 
from which (d/3/dz)z=Az was determined again from Equations 36 and 37, where Az is an infinitesimal 
value of z. Further application of  the Runge -Kut t a  method yielded a value of/3(2Az). Iterating 
according to this procedure led to numerical values of e(z) for four parameters. 

In Fig. 7, values of  r or those of zh (1 - /3h)//3h thus computed are plotted against eh for five values 
of~ at #s = 0, c~ = 0.5 and A = 0.2. Curve (A), being for the largest value of~ in Fig. 7, is almost 
the same as the curve calculated from Equation 20 at # = 0. This consistency results from the fact 
that the contribution of  the ohmic drop to the total cell voltage is predominant compared to that 
of  the overpotential for large values of  the cell voltage or the current density, as shown in Fig. 2 in 
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the previous paper [20]. In other words, the current distribution at large values of ~ is the primary 
one. Conversely when ff approaches zero, values of r tend to the curve from Equation 20 which is 
shifted upward by A -l. This amount of shift corresponds to the dimensionless resistance of the 
linearized Butler-Vohner equation for small values of (. Therefore Curve (E) in Fig. 7 is in good 
agreement with the curve calculated from Equation 20 in which # is replaced by A -~ . For inter- 
mediate values of ~, the curves are similar to Curve (A) which is shifted upward by the amount of 
the increase in the resistance due to the overpotential. This amount varies with A, ~, #s and ~h in a 
complex manner. 

When one estimates the cell resistance, it may be helpful to have a simple approximate equation 
capable of expressing variations of r with eh. Examining these variations for many combinations of 
parameters, e, A, ~ and/~s with eh, we found that Equation 20 holds approximately when # is given 
by 

# = #s + t~Bv = 02d2/(~,dl) + [tt 'wh/(Io,dl)] (40) 

#BY = t fwh/(lq~ d,)  (41) 

Here t/' denotes the dimensionless overpotential calculated from the Butler-Volmer equation when 
current I flows through the cell without gas bubbles: 

I/(iohw) = exp (o:nFq' /RT) - exp [(~ - 1)nF t f /RT]  (42) 

The error involved in Equation 20 in which p is replaced by (#s + #By) is less than 3% for any value 
of (, A, #s, 0 < 8 h < 0.8 and 0.1 < e < 0.9. By taking into account the replacement given by 
Equation 40, Equations 20-22, 24, 27-29 including r in Section 3.1 are still valid for the case of the 
Butler-Volmer overpotential. 

When Equation 20 is multiplied by Ipl dl, the following current-voltage expression is obtained: 

V -  V~q = ( I /wh)eld~{(2/5eh)[( l  - eh) -3/2 - 1 + ~h] + #s} + tf (43) 

The first term on the right hand side of Equation 43 expresses the total ohmic drop in the cell while 
the second term represents the overpotential when a current density, I /wh,  flows through the 
electrode without gas bubbles. The cell voltage can be expressed by the simple sum of the ohmic drop 
and the overpotential. Therefore the ratio of the overpotential to the ohmic drop is given by 

"Z = rf/[(I/wh)~ld~{(2/5~h)[( 1 - eh) - 3 / z -  1 + eh]} + #S] (44) 

In the case of the Butler-Volmer equation, X is different from the Wagner number because it varies 
intricately with current [20]. 

Distributions of e, v/vo and i along the electrode surface can be roughly estimated from the curves 
in Figs 2, 3 and 4, respectively when /~s is replaced by /~s + /ZBv- However it was found that 
variations of e, V/Vo and i with z are larger than those for the case of linear overpotential at the same 
value of ~, especially at the bottom of the cell. In other words, the leveling effect in the Butler- 
Volmer case is smaller than that in the linear case. 
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